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Abstract 

Each smooth elliptic Calabi-Yau 4-fold determines both a three-dimensional physical theory 
(a compactification of “M-theory”) and a four-dimensional physical theory (using the “F-theory” 
construction). A key issue in both theories is the calculation of the “superpotential” of the theory, 
which by a result of Witten is determined by the divisors D on the 4-fold satisfying x (00) = 1. 
We propose a systematic approach to identify these divisors, and derive some criteria to determine 
whether a given divisor indeed contributes. We then apply our techniques in explicit examples, in 
particular, when the base B of the elliptic fibration is a toric variety or a Fano 3-fold. 

When B is Fano, we show how divisors contributing to the superpotential are always “exceptional” 
(in some sense) for the Calabi-Yau 4-fold X. This naturally leads to certain transitions of X, i.e., 
birational transformations to a singular model (where the image of D no longer contributes) as 
well as certain smoothings of the singular model. The singularities which occur are “canonical”, 
the same type of singularities of a (singular) Weierstrass model. We work out the transitions. If a 
smoothing exists, then the Hodge numbers change. 

We speculate that divisors contributing to the superpotential are always “exceptional” (in some 
sense) for X, also in M-theory. In fact we show that this is a consequence of the (log)-minimal 
model algorithm in dimension 4, which is still conjectural in its generality, but it has been worked 
out in various cases, among which are toric varieties. 0 1998 Elsevier Science B.V. 
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0. Outline of the paper 

The general framework for this paper is given by the string theories and the dualities 
among them (see for example [ 10,40,42]. The original motivation and various applications 
of this work come from physics, while the techniques used are in the realm of algebraic 
geometry. 

We rely in fact on the work of Witten, who in [44] gives necessary and sufficient con- 
ditions, in mathematical terms, for the objects of this research, the divisors contributing to 
what is known as the non-perturbative superpotential in F-theory (see also [5,6,8,9,12,16, 
17,21,28,29,45]). 

We propose a systematic approach to identify these (smooth) irreducible divisors and 
show how this leads to questions in (birational) algebraic geometry. 

F-theory, introduced by Vafa [41], expoits the non-perturbative SL(2, Z) symmetry of 
type IIB string theory in order to produce new types of physical models associated with 
elliptic fibrations. These F-theory models can be regarded as string theories which have 
been “compactified” on varieties which admit an elliptic fibration, often assumed to have a 
section; the SL(2, Z) is identified (under the duality between F- and IIB-theory) with the 
symmetry of the homology of the generic fiber. Our results are phrased in the context of 
F-theory (nevertheless, many of the properties stated here are also true in a related theory 
known as M-theory). 

We thus consider a smooth elliptic Calabi-Yau 4-fold n : X -+ B with a section, without 
loss of generality we can assume that ,U : X -+ W is the resolution of a Weierstrass model 
rra : W --+ B (cf. Lemma 1.2) and that B is uniruled. 

Each smooth elliptic Calabi-Yau 4-fold determines both a three-dimensional physical 
theory (a compactification of “M-theory”) and a four-dimensional physical theory (using 
the “F-theory” construction). A key issue in both theories is the calculation of the “super- 
potential” of the theory, a sum 

W) = C exp(c(D), z), 
D 

over certain smooth complex divisors D C X, where X is a smooth Calabi-Yau 4-fold and 
z E H2(X, Z); a necessary condition for D to contribute to the superpotential is x(D) = 

x(D, OD) = 1 [441. 
In F-theory, a divisor D contribues to the superpotential only if it is “vertical”, i.e., 

n(D) is a proper subset of B; if the fibration is equidimensional, then such divisors are 
either components of the singular fibers (in this case W is necessarily singular), or of the 
form D = n*(C), for some smooth divisor C on the 3-fold B (Section 1). We observe 
that the divisors of the first type are “exceptional” for I_L (in a sense defined precisely in 
Observation 1.3 and Section 6), are always finite in number, and can be analyzed by using 
“ad hoc” methods, starting with Kodaira’s analysis of the singular fibers and exceptional 
divisors of Calabi-Yau 4-folds. This is the approach of Katz and Vafa [ 171. We study here 
divisors of the second type. 
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In particular we focus on two questions; namely determining when the number of such 
divisors is finite and when D is the exceptional divisor of a birational morphism, which 
seems to be the case in most examples [5,21,28,29,44]. 

We show how these questions, which are of interest in physics, naturally lead to other 
(open) questions in birational algebraic geometry. For example, if the log-minimal model 
conjecture is true, then the divisors contributing to the superpotential are always exceptional, 
in some sense (Section 6, Example 5.3 and Observation 1.3). 

We study in detail the case of B Fano (i.e., -cl (B) is very ample): we give an explicit 
description of all the divisors contributing to the superpotential (Sections 4 and 1) and of 
the birational transformations of the Calabi-Yau 4-folds which contract these divisors. In 
Section 7 (Tables l-7) we combine these (and other) results. What follows is a description 
of each section: 

In Section 1 we describe properties of such divisors C which determine whether D = 
TC*(C) contributes to the superpotential. 

In Section 3 we describe our strategy for a systematic approach and develop an algorithm. 
The fundamental observation [9] is that these divisors cannot be nef, i.e., there is an 
effective curve r on B such that C . r < 0. In particular, it follows from the results 
of Mori, Kollar and Kawamata that C . A < 0, where A is the (homology) class of an 
effective curve on an “extremal ray” of the cone of effective curves of B (the dual of 
the K%hler cone). In Section 2 we define the cone of effective curves (the ‘Mori cone”), 
extremal rays, and properties which are relevant in our setup. These objects are, in fact, 
also the building blocks of the “Minimal model program” which, loosely speaking, is 
an algorithm to construct a “preferred” minimal model birationally equivalent to a given 
variety. It is exactly by following the steps of the algorithm that we can show that the 
divisors contributing to the superpotential are, in some sense, “exceptional” (which was 
hypothesized in [21,44]). We will return to this and the related birational transformations 
in Sections 5 and 6. 

Our strategy consists in examining each extremal ray of the Mori cone and argue whether 
there exists an effective non-nef smooth divisor C such that C . r -c 0, with r E [RI. 
This first step identifies all the possible non-nef divisors. Using the technical lemmas of 
Section 1 we can then determine the ones with the right numerical properties to contribute 
to the superpotential. 

This gives a straightforward algorithm which can be applied any time the extremal rays 
of the effective cone of B are generated by effective curves; for example, when B is Fano, 
or B is toric, or a P’-bundle over certain surfaces. These cases are frequently considered as 
the basis of Calabi-Yau elliptic fibrations [21,28,29]. A byproduct of the above algorithm 
is a list of the fibrations B -+ S, with general fiber isomorphic to P’ and S a surface. This 
is relevant from the point of view of the F-theory-heterotic duality. 

Section 4 contains various examples. In particular we concentrate on an equidimensional 
elliptic Calabi-Yau X + B, with B a Fano 3-fold (cl (B) > 0) and show that the number 
of the divisors contributing to the superpotential is always finite. We use the classification of 
Mori-Mukai of such 3-folds to describe the divisors of type D = n*(C) which contribute to 
the superpotential for each Fano B, as well as the P’-fibrations (if any) of B (Section 7). We 
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also compute the topoligical Euler characteristic of X, when X = W, its smooth Weierstrass 
model. 

In Section 5 we will show how divisors contributing to the superpotential naturally are 
associated to faces of the Kahler cone of X which lead to another (necessarily singular) 
birational model of X. 

Some of these divisors are indeed defined by birational contractions (to the Weierstrass 
model), see Observation 1.3. If X = W -+ B with B Fano, any D = n*(C) contributing 
to the superpotential determines a birational transformation 4 : B + B’ with exceptional 
divisor C (i.e., codim(4(C)) 2 2). We construct aflop of X along D, and then contract the 
image of D. We obtain an elliptic Calabi-Yau 4-fold (over B’), with “canonical singularities” 
(the same type of singularities as of the Weierstrass model of a Calabi-Yau). I do not know 
whether it is possible to build a physical model with these singularities. It is possible in 
various examples (Section 5) to smooth the singularities and obtain another Calabi-Yau, 
where there is no longer a contribution to the superpotential related to D. In this case, the 
Hodge numbers change. 

In Section 6 we speculate that this is always the case, even in M-theory. In fact, a gener- 
alized (but still conjectural) version of the minimal model algorithm implies that given any 
divisor D contributing to the superpotential on a Calabi-Yau 4-fold X (in M- or F-theory), 
there is a birational model of the fibration p(X) such that p(D) does not contribute to the 
superpotential and p(X) is singular (at least with canonical singularities). This generalized 
version (the “log-minimal model program”) has been worked out in various cases, among 
which are toric varieties. 

The divisors contributing to the superpotential thus generate reflections of the Kahler 
cone of X in a “larger” cone. It would be interesting to study the Weyl group generated by 
such reflections, and how this is (if at all) related to the heterotic duals and the change of 
Hodge numbers of the smoothed variety (as in [33,34]). 

It would also be interesting to study the Calabi-Yau 4-fold which can be “connected’ by 
transitions related to divisors contributing to the superpotentials: see also [ 1,2,39]. 

The core of the paper is in Sections 3, 4 and 6.2: the reader should probably start with 
Section 3 and the general strategy, continue with the examples (Sections 4, 5 and 6.2 and 
the tables (Section 7) and use Sections 1.2 and 6.1 as a reference. 

Finally, in writing this paper I had to give the precedence to some topics over others. The 
parts left out will be investigated in a sequel (in the not too distant future, I hope). 

1. Technicalities 

The motivation of this paper comes from describing the divisors contributing to the 
superpotential in F-theory; in this context our results are complete and more satisfac- 
tory at the moment. Nevertheless, many of the properties stated here apply also to M- 
theory. 

We start by considering a smooth elliptic Calabi-Yau n-fold X with a section; i.e., Kx = 
OX, h’(Ox) = 0, 0 5 1 5 n - 1, and there is a morphism rr : X -+ B to a smooth 
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(n - 1)-dimensional variety with general fiber a smooth elliptic curve. Furthermore, there 
exists a morphism s : B + T c X which is isomorphic to its image (“the section” of n), 
with inverse n I T. (It is actually enough, for many of the applications considered here, to 
consider a “rational” section, i.e., the inverse s of n is only defined on an open set in B). 

We also assume that the elliptic fiber degenerates over a non-trivial divisor in B. As a 
consequence, h’(B, 0~) = 0 Vi > 0; if dim(B) = 2, B is rational; if dim(B) = 3, B is 
uniruled. 

Definition 1.1. no : W -_, B is a Weierstrass model if W can be described by the homoge- 
nous equation y*z = x3 + Axz2 + Bz3 in the projective bundle P(0 @ L2 $ L3), with L 
a line bundle on B and A and B sections of -4L and -6L, respectively. 

IfL=-Ka,thenKw-0~. 

W is often singular; interesting mathematics and physics arise from the resolutions of 
singularities, see for example [4,17,34]. On the other hand, if -Kg is very ample and 
hi (B, 0~) = 0 Vi > 0 then W is a smooth Calabi-Yau manifold. Many elliptic Calabi- 
Yau manifolds can be constructed in this way (see Section 7). 

If n : X + B is an elliptic Calabi-Yau with section, we can assume (without loss of 
generality) that rr : X + B is the resolution of a Weierstrass model no : W -+ B. In 
fact: 

Lemma 1.2. Let X -+ B be a smooth, elliptic Calabi-Yau n-fold, with B smooth. Then: 
(1) Kx = rr*(Kn + A), where 124 = Eni&, ni E N. Here Ei denotes a component 

of the locus in B where the elliptic curve degenerates; the summation is taken over all 
such components. 

(2) If the fibration n has a section B -+ X, then there exists a Weierstrass model of 
the fibration and a birational morphism p such that Kx = p*(Kw) (i.e., W has 
“canonical” singularities) and the following diagram is commutative: 

X 1: w 
A4 Jxo 

B. 

(See also Section 6.1.) 

Proof (1) and existence of the Weierstrass model are due to Nakayama’s Theorem 2.1 [37]; 
a discussion of the notation can be found in [34, vol. 4731. A straightforward argument shows 
that the condition Kx N ox implies that Kx = p*( Kw). This proves (2). ??

In F-theory a divisor D contributes to the super-potential only if it is “vertical”, i.e., n(D) 
is not the whole B [44]. In this paper we analyze the divisors D = n*(C), where C is a 
smooth curve on B. The motivation is given by the following: 
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Observation 1.3. Let D be a smooth divisor in X, as above, contributing to the super- 
potential. 

(1) 

(2) 

(3) 

Zf n (D) is not a divisor on B, D is necessarily exceptional for p. 
If n : X + B is equidimensional, then either: 

D = n*(C), where C c B is a smooth irreducible divisor such that nD : D -+ C is 
an elliptic$bration, or 
n(D) = .Ei is a smooth component of the ramification divisor and either D is excep- 
tional for p or W is singular along a subset of p( 0). 

Proof The existence of a section, equidimensionality and smoothness of D force n(D) to 
be smooth. If D = n*(C), then a simple computation shows that the fiber over a general 
point of C is a smooth elliptic curve and thus no : D + C is an elliptic fibration in the 
sense of Kodaira (see also [34, vol. 4731; in fact it is enough to consider the Weierstrass 
model). 0 

Observation 1.4. Conversely; if D = n*(C) is a smooth divisol; with C smooth, then 
?‘tD : D + C is an elliptic$bration. 

Note that the divisors of types (1) and (3) in Observation 1.3 are always finite in number 
and exceptional, in some sense. As this paper was being written [17] appeared, where a 
particular class of divisors of type in Observation 1.3 is studied. They show in particular 
that under certain hypothesis, some D are not exceptional for p but contribute to the super- 
potential (as in (3) Observation 1.3); this is why we write “exceptional in some sense” (see 
also Section 6.1). 

One application of this work is a criterion to determine under which conditions the 
divisors of type (2) in Observation 1.3 are also finite in number and exceptional. If rr is 
not equidimensional, then n(D) might not be smooth, when D is smooth (see Section 5.3 
for an example). It might be that one should consider, more generally divisors with mild 
singularities (see also [ 111). On the other hand, n is indeed equidimensional in many of the 
examples considered in F-theory. 

We should also point out that X (0) and hi (D, 00) are birational invariants and Nakayama 
[37] showed that there exists a smooth birationally equivalent elliptic fibration which is 
equidimensional over the strict transform of C. We plan to discuss this topic in a continua- 
tion of this paper. 

In’ the rest of this section we study properties of the divisors D of type (3) in 
Observation 1.3. 

Our goal is to reduce the calculation on B, by writing X (D) as an expression on B. This 
is particularly useful when the geometry of B is well known, for example B is a toric or 
Fano variety. 

(In the following hk( V, .Q = 0, whenever k < 0.) 
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Lemma 1.5. Let X --+ B be a smooth, elliptic Calabi-Yau n-fold, with B smooth and let 
C c B and D c X be smooth divisors such that D = n*(C). Then 

hm(C,C?C)+h”-‘-m(C,(3C(C)) VOimFn-1, (1.1) 
h”(D, 00 = 

h” (C, 0~) + hm-’ (C, -Al,) VO 5 m i n - 1, (1.2) 

x CD, OD) = X(c, 0~) + (- l)+‘X (ct oc(c)) 
= x(C, C’c) + (-l)"-'x(C, Kc + A>. (1.3) 

Proof Note that nlD = defnD : D + C is an elliptic fibration between smooth varieties; 
let us set AC = Ale. By Lemma 1.2, 12Ac is a line bundle supported on the ramification 
locus of the fibration, which is the complement in B of the locus of the image of the smooth 
elliptic curves of the fibration. 

Theorems 2.1, 7.6 and 7.7 in [23] apply to no : D + C and we get the short exact 
sequences: 

0 -+ P(c,(n~),(Ko))+ Hk(D, KD) + fP'(C,KC) + 0, 

Oskjn-2, 

which give 

hk(D, KD) = hk(C, no * (KD)) + hk-‘(C, Kc), VO 5 k. 

By the adjunction formula and Lemma 1.2 (1) the following equalities hold: 

KD = (Kx + D)ID = (Ox + D)ID = n*(C)iD 

= nD*(ClC) =nD*(oC(C)) = n*(Ke +A+C)lD 

=~D*((KB+C)IC+AC> = ~to*(Kc+Ac). 

The projection formula [13] now gives AD, = Kc + AC = C/C. Note that CIC = 
NC/B is the normal bundle of C in B. 

The statement of the lemma follows from Serre’s duality, applied to V = C (resp. V = D) 
and L = Kc + AC, Kc (resp. L = KD). 

(Serre’s duality: hm(V, L) = hrvm(Kv - L), where L a line bundle on a smooth r- 
dimensional variety V .) 0 

Combining the results in Lemma 1.5 we also get the following corollary, which will be 
used in the explicit computations, 

Corollary 1.6. In the hypothesis of Lemma 1.5, assume that dim(X) = 4. Then: 



296 A. Grassi/Journal of Geometry and Physics 28 (1998) 289-319 

how, 00) = hO(C, 0c), 

h’ (D, c?D) = h’(C, Oc) + h2(C, ClC) 

= h’(C, Oc) + h2(B, C) 

= h’(C, C’c) + h2(C, Kc + A,) 

= h’(C, C’c) + h’(C, -Al,), 

h2(Q 00) = h2(C, c?c) + h’(C, CIC) 

= P(C, UC) + I%‘(& C) 

= h2(C, Oc) + h’(C, Kc + A,) 

= h2(C, UC) + h’(C, -Ale), 

i&D, 00) = P(C, CIC) = hO(B, C) - 1 

= h2(C, Kc + A,c) = h2(C, -A,,). 

(1.4) 

Furthermore, 

x(D, 0~) = -1/2(Kc + AC). AC = 1/2KB . C2. (1.5) 

ProoJ When X is a 4-fold, by the Hirzebruch-Riemann-Roth theorem for a line bundle 
L on a smooth surface C we have 

and obtain the first equality in (1.5) by substituting L = Kc + AC. 
From the short exact sequences 

we find 

x(D, 00) = &COB) - x((3Ll(-C)) - X(OB(C)). (1Sa) 

On the other hand, the Hirzebruch-Riemann-Roth theorem for a line bundle L on a 
smooth 3-fold B says that 

x(B, L) = x(c3~) + iL3 - iL2 * Kg + AL * (Ki +Q). 

Substituting this expression in (1.5a) for L = C and L = -C, respectively, we obtain 
the second equality. 

The first set of equalities in (1.4) are a direct consequence of Lemma 1.5. The second set 
follows from (1.5a), since hi (B, 0~) = 0 Vi > 0. 0 

The following corollary is the first application of the above machinery; it is obvious, but 
useful in computation. 
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Corollary 1.7. 
(1) If AC = Oc, then D does not contribute to the superpotential. 
(2) IfAc # c?c, then h’(D, 00) = h’(C, 0~). 
(3) h3(D, 00) = 0 + h’(B, C) = 1. 

Proo$ (1) If AC = c3c, then x(D, 00) = 0, by (1.5). 
(2) Recall that 124 is an effective divisor. If AC # OC, h’(Ac) # 0 would imply 

h”(- 12Ac) # and thus h”( 12Ac) = 0 (if a divisor and its opposite have non-zero sections, 
then the divisor is necessarily trivial). 0 

2. Minimal model theory and the superpotential 

The extremal rays in the sense of Mori are relevant in this case; we fix some notation 
and recall some results of Mori (et al.). Standard references are [7,19,43]. B denotes any 
smooth complex algebraic variety. In Sections 3 and 4 we will apply the facts stated here 
to the case of B, the smooth base 3-fold of an elliptic Calabi-Yau 4-fold fibration (see also 
Section 6). 

First we give some definitions. 

Definition 2.1. By NE(B) c R” we denote the cone generated (over U&u) by the ef- 
fective cycles of (complex) dimension 1, mod. numerical equivalence; and by NE(B) its 
closure in the finite-dimensional real vector space [We of all cycles of complex dimension 
1, mod. numerical equivalence (see for example [7]). 

Note that C = rk(Pic(B)), and in the cases we are considering here e = bz(B), the 
second Betti number of B. 

Kleiman’s criterion [20] says that D is ample if and only if D. r > 0 for all r E NE(B); 
in particular NE(B) is the dual of the closure of the ample cone with the duality given by 
the intersection pairing between curves and divisors. 

The closure of the ample cone is called the nef cone: a divisor D is nef if and only if 
D . r >_ 0 for all the effective curves r on B. 

The description of NE(B) for many varieties B can be found in [7,19,26], and for 
Fano 3-folds (the case considered in Example/Theorem 4.5, Corollaries 4.6 and 4.7 and 
Example 4.8) in [27]. We present here some examples that will be relevant in Section 4, in 
the description of divisors contributing to the superpotential: 

Example 2.2. If rk(Pic(B)) = 1, then NE(B) is the positive real half-line. 

Example 2.3. If B = IF, is a ruled rational surface B + P’, then NE(B) is the convex 
cone generated by {f, cm}, where f is the (class of the) fiber of the fibration and by croo 
the (class of the) unique section with a& = -n. 

Example 2.4. If B = P’ x S and NE(S) is generated by {fi}, then NE(B) is generated by 
(C, fi x t), where e is the class of the fiber of the projection B --+ S (which is a smooth Lo”) 
andtisapointinP’. 
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Definition 2.5. R is called a negative extremal ray on the smooth 3-fold B if R is an extremal 
ray of the cone NE(B) in the usual sense, and Kg . A < 0 for a curve (equivalently, for all 
curves) A with homology class spanning the extremal ray R. We will write A E [RI. 

Example/Theorem 2.6 (Mori). If-Kg is ample, then every extremal ray is negative and 
NE(B) is the convex cone generated by the extremal rays. Furthermore, the extremal rays 
areJ%tite in number 

Theorem 2.7 (Contraction Theorem, see for example [7,43]). Zf R is a negative extremal 
ray, then there exists a morphism 4~ : B -+ BR, where BR is a projective variety with “mild” 
singularities (which can be described), and an irreducible curve E c B is contracted by 
@R if and only if the homology class of E belongs to the external ray R. Furthermore, 
rk(Pic(B)) > rk(Pic(BR)); $R is called the contraction morphism. 

(The singularities which occur are called “terminal”; if dim(B) = 2 these are the smooth 
points.) 

Remark 2.8. In general, if any morphism contract a curve on one extremal ray, then it 
necessarily contracts all the effective curves on the same extremal ray. 

Example 2.9 (Contraction morphisms and extremal rays). In Example 2.2, if Kg . r < 0, 
for an effective curve r on B, (equivalently, all effective curves) then NE(B) consists of 
one negative extremal ray and the corresponding contraction morphism sends B to a point. 
If Kg . r > 0, then there is no negative extremal ray. 

In Example 2.3, f is always a negative extremal ray (Ku. f = -2) and the corresponding 
contraction morphism gives the structure of PI-bundles F, + P’. 

On the other hand, Kg s ooo < 0 only when n = 1; in this case cr, in the only negative 
external ray. The corresponding contraction morphism is F,, -+ P2 the blow up of IF2 
at a point. Note that we can always contract crm, independently of the value of n. The 
image surface however will always be singular unless IZ = 1. In fact the “mild” singularities 
mentioned above (in the statement of the contraction theorem) are exactly the smooth points 
when dim(B) = 2. 

Example/Theorem 2.10 (Mori). Zf dim B = 3, then the exceptional locus CR of a bi- 
rational morphism 4~ : B + BR associated to a negative extremal ray R is one of the 
following reduced divisors: 
(1) CR is a P’-bundle over the smooth curve @R(CR), with $Ku + Ci = 1 - g(@R(CR)); 
(2) CR - P2 with OcR(Cu) = &2(-l); 

(3) CR - P2 with OCR = 0p2(-2); 
(4) CR - P’ x [FD’ with OCR = O~I xp~ (-1, -1); 
(5) CR is a singular quadric surface in P3. 

In cases (1) and (2) BR is a non-singular 3-fold; OR is a quadruple point in case 
(3) and a double point otherwise. 
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Proo$ See [7,30], or [43]. 0 

3. The algorithm 

We now consider the case of n : X -+ B, an elliptic fibration of a Calabi-Yau 4-fold 
X, with C and D = n*(C) smooth divisors. This happens when n is an equidimensional 
elliptic fibration with section, as we saw in Observation 1.3. 

The following remarks are the building blocks of our strategy: 

Remark 3.1. If D = n*(C) contributes to the superpotential, then there exists an extremal 
ray R on NE(B) such that C . A < 0 for all the curves A on the ray R. 

In fact, D and C cannot be nef divisors [9]; C is non-nef if and only if C . A < 0 for all 
A on some extremal ray R of NE(B). 

Remark 3.2. If C is not nef, all the curves on the extremal ray R must be contained in 
C. In particular, ifthere exists a morphism B + S contracting exactly the curves on the 
extremal ray R, then dim(B) = dim(S). 

Strategy. 
(S 1) We consider cases where the extremal rays of NE( B) are generated by effective curves. 
(S2) For each extremal ray R, we determine whether there exists an effective smooth divisor 

C such that C . F < 0, for f on the ray R. 
(S3) If such a C exists, we check its numerical properties. 

In most relevant cases (in F-theory) this strategy gives a quick algorithm to determine 
the divisors of this form contributing to the superpotential. We will do so explicitly in 
Section 4. 

In fact, the external rays generate the cone of effective curve when B is Fano (cf. 
Definition 2.5), toric [3,38], or a PI-bundle over certain surfaces. These cases are frequently 
considered as the basis of Calabi-Yau elliptic fibrations (cf. (Sl)). 

Often the extremal rays are defined in terms of morphisms (see Remark 2.8); this is in 
fact always the case for negative extremal rays (by the contraction theorem) (cf. (S2)). 

At the same time (by looking at the extremal rays) we can also describe the PI-bundle 
structure (if any) of B. This is relevant from the point of view of daulity with heterotic 
theory. We will do so explicitly in Sections 4 and 7 (Tables l-7). 

We will use Corollaries 1.6 and 1.7 for (S3). 
Another advantage of this approach is that in our examples we get a map 

{divisors contributing to the superpotential} 

+ (faces of the Kahler cone of X). 

Note that the divisors of types (1) and (3) in Observation 1.3 are always associated to a 
face of the K5hler cone of X as they come from resolving the Weierstrass model of X. 
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For the divisors of type (2) in Observation 1.3 the question is more subtle: 

Remark 3.3. In terms of the dual “nef” cone, the morphism associated to a chosen negative 
extremal ray gives a divisor class on the boundary of the “nef cone” of B (cf. Theorem 
2.7). When we start from a divisor contributing to the superpotential, this “face” of the nef 
cone must lead to another (birational) model of B by Remark 3.2. 

In Section 5 we will show how divisors contributing to the superpotential are associated 
to faces of the Kahler cone of X which lead to another (necessarily singular) birational 
model (of X). 

We speculate that this is always the case, even in M-theory and show how this is related 
to various conjectures in algebraic geometry [ 191. 

3.1. The case of negative extremal rays 

Only the negative external rays which determine birational contractions (Remark 3.2) are 
relevant for our purposes. 

In this case (dim(B) I 3 there is a unique non-nef divisor CR such that CR . r < 0 
Vr E [R] (cf. Example/Theorem 2.10); we also have a complete list of the possible CR 
which occur. We only consider here smooth divisors CR (see [44]); the case (5) of the 
Example/Theorem 2.10, the quadric cone in [ID3 should be also of interest, as it is a divisor 
of simple normal crossings [ 111. This will be investigated in a forthcoming paper. 

The following proposition follows directly from (Corollary 1.6) together with Mori’s 
description given in Example/Theorem 2.10. 

Proposition 3.4. Let R be a negative extremal ray associated to a birational morphism 4R, 
CR the unique exceptional divisor and DR = I*, as in Example/Theorem 2.10. In 
cases (2)-(4) 

h’(DR, 00,) = 1, 

h’(D&&) =h2(DR, 00,) =h3(h~DR) =o, 

and DR always contributes to the superpotential. 
In case (1) 

x(DR) = ;Kn. Ci = 1 - g(d~u(Cu)) = I 

ifand only if$R (CR) is a rational curve; furthermore, 

h’(DR, ~D,>=l, h’(Dn, oDR) = h’(C, Oc) = 0, 

h2(C, ~D,)=x(DR,~D~) - 1 -h'(C,oc) 

= h3(Dn, 00,) = 0, 

and DR contributes to the superpotential if and only if CR is rationally ruled. 
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We speculate that these are exactly the cases when CR deforms whenever B 
deforms. 

4. Examples (the algorithm at work) 

We apply the algorithm outlined in Section 3 to various examples. because we restrict 
ourselves to divisors of type (2) of Observation 1.3 (i.e., of the form D = n*(C), with 
D and C both smooth), we describe on B the relevant divisors C (such that D = JC* (C) 

contributes to the superpotential). If X = W, then these are all the divisors contributing 
to the superpotential; and we can write the superpotential (Section 7). The divisors not of 
this form are always finite in number (in F-theory), are “exceptional in some sense (see 
Observation 1.3), and can be described with other methods. 

Example 4.1. If b2(B) = rk(Pic(B)) = 1, no divisor of the form D = r* (C) contributes 
to the superpotential and there is no fibration B + S, dim(S) # 0. 

In fact, in this case, NE(B) is a half-line (see Example 2.2): any divisor containing all of 
the line would also contain all of B. 

In particular, -Kg = cl (B) is necessarily an ample divisor: in fact -12K~ is the 
effective, non-trivial, divisor image (under n) of the singular fibers. B is a Fano 3-fold; 
such varieties were classified by Iskovskih [14,15]. Among those are B = Q3 and B = Q 
the smooth quadric in P4. The complete list will appear in Section 7. 

Example 4.2 (no. 27, Table 3). If B = P’ x P’ x P’, no divisor of the form D = n*(C) 
contributes to the superpotential. 

In fact, NE(B) is a cone with three edges in [w3 : each edge being a fiber of the projection 
to two of the factors (see Example 2.4 and Remark 3.2). 

Example 4.3 (for it = 1, no. 28, Table 3). If B = P’ x F,, n > 1, then no divisor con- 
tributes to the superpotential when IZ # 1, and one divisor contributes when II = 1. In the 
latter case, the divisor is determined by a negative extremal ray of type (1) of Example/ 
Theorem 2.10. 

There is a (FD’-fibration B + F, and a P’-fibration B -+ P’ x P’. 

(This is analyzed in [44], for n = 1.) 
In fact, NE(B) is generated by {L, f, (T} where e is a fiber of p : B + En, f a fiber of 

B +- P’ x P’, and cr = obo x {t}, t E P’, as in Examples 2.3 and 2.4. 
There is no non-nef divisor associated to f ore cf. Remark 3.1; if we set C = ~-‘(a,), 

then C .o = -n is non-nef when n > 0. Note that C - P’ x P’ and h”(C, 0~) = 0, 
h1(C,Oc)=h2(C,C3c)=O;weidentifythePicardgroupofP’xP1with(a,b):acurve 
is effective when a, b > 0. 

We need to compute h’(C, Clc) (for n > 0) and determine whether C contributes to 
the superpotential, by Corollary 1.6. A simple computation gives Clc = (-n, 0) and 
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immediately h”(C, Cic) = 0, h*(C, Clc) = h”(C, (n - 2, -2)) = 0 (by Serre’s dual- 
ity). It follows also that h I (C, C/C) > 0 if n > 2 and h’ (C, Clc) = 0 for n = 1 (Kunneth’s 
formula). 

Example 4.4 [9]. If B = S x [FD’ , where S is a general rational elliptic surface with section, 
then there are infinitely many divisors contributing to the superpotential, corresponding 
to the negative extremal rays of NE(S). There is one P’-fibration to P” x P’ and one 
to s. 

It is not hard to see that the generators for NE(S) are f and say, where f is a fiber and s, 
a section of the elliptic fibration p : S + P’ . We can choose S so that the s, ‘s are infinitely 
many; it turns out that every s, is a negative extremal ray. 

Then NE(B) (see Example 2.4) is generated by {f x t, s, x t, e} with s,, f as above, 
t E P’,andl afiberof B + S. 

f x t and J? do not determine divisors contributing to the superpotential: they are in fact 
the general fibers of B --+ P’ x P’ and B + S, respectively (cf. Remark 3.2), while 
s, x t is a negative extremal ray on B for all o. The corresponding divisor Cs, is of type 
(1) of Example/Theorem 2.10, is isomorphic to P’ x Pt and contributes to the superpo- 
tential. It follows that the divisors contributing to the superpotential are exactly the C,, (cf. 
Remark 3.1). 

Example/Theorem 4.5. Assume that B is a Fano variety, i.e. cl (B) = -Kg is ample. 
Then the divisors D = TC* (C) contributing to the superpotential are exactly the exceptional 
divisors C = CR (corresponding to the contraction of extremal ray R) listed below: 

(1) CR is a P’ -bundle over a smooth rational curve (4~ (CR)), 

(2)-O) CR - p*, 

(4) CR - P’ x P’. 

Proot If B is Fano, the negative extremal rays generate NE(B); thus C is non-nef only it 
contains all the curves E in the homology classes of some negative extremal ray R. Mori’s 
result says that all such curves span the exceptional locus of the morphism $R, described 
in Example/Theorem 2.10. Then necessarily, C = CR and @R is a divisorial contraction. 
The statement follows from Proposition 3.4. 0 

Corollary 4.6. Let B be a Fano 3-fold. 
(1) Zf rt is equidimensional, then there is only a finite number of divisors contributing to 

the superpotential. 
(2) Zf X = W (the Weierstrass model is smooth), then the divisors contributing to super- 

potential are exactly the exceptional divisors of Mori contractions listed above. 

Proo$ If B is Fano (by the “Cone theorem”), there are only finitely many negative 
extremal rays, hence a finite number of such divisors D on X contributing to the super- 
potential. 0 



A. Grassi/Journal of Geometry and Physics 28 (1998) 289-319 303 

In the examples in [44] Witten shows that “a superpotential is not generated by instantons 
by showing that any divisor D on X has x (D) # 1, or we show that a superpotential is 
generated by showing that some choice of the cohomology class there is precisely one 
complex divisor D, which moreover has ht = hz = h3 = 0”. 

This is exactly what always happens for B Fano: 

Corollary 4.7. Let B be a Fano 3lfold and D = n*(C). Then either x(D) # 1 or ho(D) = 
1, h’(D) =O, i #O. 

Mot+Mukai [3 l] classified all Fano 3-folds and Mats&i [27] described the extremal rays 
for each of them: the relevant divisors are the one corresponding to birational contractions 
(cf. Remark 3.2). We apply our algorithm to each case in their list and we determine the 
divisors of type (2) of Observation 1.3 contributing the superpotential (Section 7). The 
only delicate point is when C is of type (1) Example/Theorem 2.10, i.e., a P’-bundle over 
a smooth curve L = @R(C) : C contributes if and only if L is rational (cf. Proposition 
3.4). The following identity is useful to compute g(L) the genus of L (notation as in 
Example/Theorem 2.10): 

(-Rs)3 = (-R&)3 - 2(-R& . L - g(L) + 1). 

Example 4.8 (b2 = 3, no. 9 in [3 11). B is the blow up of the cone over the Veronese surface 
R4 c P5 with center a disjoint union of the vertex and the quartic in R4 - P2. (Recall that 
the Veronese surface is P2 embedded in P5 by its linear system of tonics.) 

The Mats&i--Mori-Mukai classification says that NE(B) is generated by 4 curves (the 
extremal rays): RI, the ruling of the exceptional divisor over the quartic, R2, the strict trans- 
form of a line in the Veronese surface; R3, the ruling of the exceptional divisor which is 
the strict transform of the ruling over the quartic, RJ, a line in the exceptional divisor of the 
blow up of the vertex of the Veronese cone. Furthermore, the corresponding extremal con- 
tractions 4~~ : B + BR, are all birational: R1 and R3 are of type (1) of Example/Theorem 
2.10, while R2 and R4 are of type (3) of Example/Theorem 2.10. The exceptional divi- 
sors of @Ri, i = 2,4, contribute to the superpotential, while the others are PI-bundles 
over a curve of positive genus (the plane quartic) and do not contribute (cf. Example/ 
Theorem 4.5). 

BRA, i = 1, 3, is the blow up of the Veronese cone with center a plane quartic; while BR, , 
i = 2,4, is isomorphic to the blow up of the Veronese cone with center the vertex (b2 = 2, 
no. 36). The extremal transition with exceptional divisors contributing to the superpotential 
lead in this case to a singular variety BR. 

5. Transitions of CY 4-folds I: the case of negative extremal rays 

One of the examples studied by Witten [44] is B the blown up of P3 at a point (this is 
no. 35 in the list of Mori-Mukai). A puzzle arises here: whiIe there is no divisor on P3 
contributing to the superpotential, the exceptional divisor of the blow up contributes on B. 
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We will show that all the divisors contributing to the superpotential are always “ex- 
ceptional” in some sense, at least when B is Fano. The general statement depends on the 
(log)-minimal model conjecture which will be discussed in Section 6. 

Note that some of these divisors are actually “defined” by birational contractions (to the 
Weierstrass model), see Observation 1.3. The divisors considered in [ 171 are of this form. 

What will follow is in fact a four-dimensional analog of the construction in [34, vol. 4761: 
in that case B = Ft, CR is the curve with self-intersection - 1 (this curve is in fact a negative 
extremal ray, cf. Example 2.2). Morrison and Vafa perform a toric flop of the holomorphic 
image of CR in X (X -+ B has a section), and then contract the image of D = n-’ (C) 
(which is a Del Pezzo surface). Finally, they smooth the singularity. 

Similarly, we consider JC : X + B, with X equal to its smooth Weierstrass model, B 
Fano and assume that D = n*(C) is a divisor contributing to the superpotential. Then 
C = CR is the exceptional divisor of the contraction morphism 4~ : B + BR associated 
to the negative extremal ray R (Section 3 and Example/Theorem 4.5, Corollaries 4.6 and 
4.7 and Example 4.8). D cannot be contracted immediately (see Example 6.8), so (as in 
[34, vol. 4761) we first start with a “flop” (Proposition 5.1) and follow with a contraction 
(Proposition 5.2). 

As in [34] we assume, for simplicity’s sake, that the fibration n is general, i.e. that there 
is only one section. 

The new 3-fold XR + BR is elliptically fibred, but it is singular: in the cases where X is 
a general smooth Weierstrass model (as in [34, vol. 476]), the singularities can be described 
precisely. These type of singularities are called “canonical” (Section 6) and are the same 
type of singularities that occur on the singular Weierstrass models. It is not clear to me 
whether a physical model can be built with these singularities. 

If the singularity can be smoothed (we explicitly do so in various cases), then the resulting 
Calabi-Yau will have different Hodge numbers. 

It is an interesting question to investigate this change and how it might be related to the 
exceptional divisor contracted (as in [34, vol. 4761). 

Proposition 5.1 (The flop). Let C = CR as in Example/Theorem 4.5 and Corollary 4.6. 
Then there exists a contraction B + BR, where BR is another 3-fold and a birational 
transformation (“flop”) X + XR such that the following diagram is commutative: 

x A XR 

7r 
1 1 

XR 

&R B - BR 

XR is smooth only ifC~ is of type (1) in Example1 Theorem 2.10. 

Proof (Following Mats&i). We have assumed the existence of a section of the elliptic 
fibration; so there exists a smooth 3-fold T isomorphic to B in X (a “copy” of B in X); by 
CR we will denote both the surface in B and its isomorphic image in T. We can “duplicate” 
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the contraction of CR in B cf. Example/Theorem 2.10 in its holomorphic image in T (and 
X) and obtain a birational transformation X + Z, see Example 6.8). Mats&i in [27] 
considers a similar situation and explicitly constructs the flop of each surface CR in X, for 
each R. The pictures are fairly self-explanatory: 
_ the large ovals denote T, the image of B in X and its images after the blow ups and blow 

downs, 
- the object in the ovals denote the image of CR in X and their images after the various 

birational transformations, 
- the “parachute type” objects in the X and XR denote D and its image DR after the “flop”. 

It is clear from the picture that DR has intersection positive with the fiber of the contraction 
with Z, while D f R -c 0 (R is the fiber of the contraction X -+ Z). We have performed a 
“log-flip” with respect to D (see also Example 6.8). 

For a detailed description see [27, pp. 30-361 and also Section 6. 

CR is oftvpe (1) in Example/Theorem 2.10: CR is IF”-bundle over @R(C), and BR is a 
smooth 3-fold. The shaded area is a vertical “section” of p(D) = DR, which is isomorphic 
to the Del Pezzo surface which is obtained by blowing up P* at eight points (see also 
Proposition 5.2, Example 6.8 and [34, vol. 4761). 

con tr. I 

Z 
63 

XR is smooth. 

CR is oftype (in Example/Theorem 2.10): CR - [Fp’ x P’, @R (CR) is an ordinary double 
point in BR. 

XR is singular along a P’ (the “fat” point in the picture). 
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CR is oftype (3) in Example/Theorem 2.10: CR - P2, @R(CR) is a quadruple point in 

BR. 

t 

flop 

t 

t 

XR has a singular point (the “fat” point in the picture). 

CR is oftype (4) in Example/Theorem 2.10: CR - P2, BR is non-singular. 

XR has a singular point (the “fat” line in the picture). 0 

As Mats&i points out these are not the only flops which can occur; however our goal 
here is to show that we can ultimately contract the image of D, which cannot be contracted 
in X (see Section 6). However, it is possible that one would need to consider other type of 
flops to describe all the reflections (and corresponding Weyl group) of the K%hler cone of 
X, in the enlarged Kahler cone, determined by the divisor contributing the superpotential. 

Note the flops used above are toric, even when B is not tot-k. 

Proposition 5.2 (The contraction). There is birational transformation p : X -+ _%R with 
exceptional divisor p(D) and an elliptic Jibration XR -+ BR (with section) such that the 
following diagram is commutative: 
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B - BR. 

_%R has canonical singularities (p*(Kx,) = Kx). 

If the Weierstrass model of X is singular, it has canonical singularities; I do not know if 
one can construct a physical model with these singularities. 

If XR can be smoothed, then the Hodge numbers of the resulting manifolds will be 
different. 

Proofoff’roposition 5.2. We describe in details the case (1) of Example/Theorem 2.10; the 
others are similar. See also Section 6. CR is a P’-bundle over the rational curve @R(CR), 
with fiber f while pR(CR) is a SUrface. The elliptic fibration ns: rr-’ (f) = s + f is a 
rational elliptic surface with section (see [33,34]), for each fiber f; the section is given by 
the intersection of CR with S. After the “flop” 5 is a Del Pezzo surface pR(s). isomorphic 
to the blown up of [Fp2 at eight points. Each surface can be contracted to a point; actually 
all the surfaces can be simultaneously contracted to a rational curve rR (see Example 6.8) 
with a birational morphism XR + XR. Let p : X -+ XR denote the compositions of the two 
birational morphisms; from the explicit construction of the flop it is clear that the elliptic 
fibration over BR is preserved and the following diagram is commutative: 

A 1 1 A 

4R 
B - &. 

Note that codim p(D) > 2, i.e., the image of the divisors contributing to the superpotential 
is no longer a divisor. On the other hand XR is singular along rR; these singularities are 
canonical (like the singularities of the Weierstrass model of X). [K, 1.51. XR is equisingular 
along rR : the singularity at each point of rR of a transverse 3-fold is exactly as in vol. 476 
of [34]. In fact, we can smooth XR as in [34, vol. 4761. 

The transitions among Fano 3-folds with exceptional divisors contributing to the super- 
potential appear in Section 7. 

Example 5.3 (Where have all these divisors gone?). From the tables in Section 7, we can 
see the sort of the other divisors contributing to the superpotential after a birational con- 
traction Propositions 5.1 and 5.2: some still contribute to the superpotential; in some other 
cases the birational morphism 4~ becomes a P’ (or conic bundle) fibration of BR . 

In Example 4.4. (B = S x P’, with S a rational elliptic surface) the birational transfor- 
mations C#JR, corresponding to the extremal ray s, x t contracts B to BR = P’ x S1, which 
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is the unique Fano 3-fold with b2 = 10 (Sk is the Del Pezzo surface obtained by blowing 
up P2 at 9 - k points; set S = So). 

We can perform 0 5 k 5 9 contractions of non-intersecting extremal rays and consider 
the induced elliptic fibration nk : X + Bk = $_k x P’ . If k > 1, there are Dk smooth 
divisors mapping to curves in Bk and nK has no section. There is an infinite number of 
divisors contributing to the superpotential, whose image in Bk is a singular divisor. I do not 
know at this moment if this can occur when there is a section. 

We can also contract the divisors Dk, as in Propositions 5.1 and 5.2. A finite number 
of such divisors will still contribute to the superpotential, while infinitely many become 
singular divisors with normal crossings. 

6. Transitions of CY 4-folds II: are these divisors “exceptional”? 

We present some evidence that all the divisors contributing to the superpotential (also in 
M-theory) are “exceptional”, in the sense that are related to some birational transformation. 
They might not all be exceptional, in a strict sense, as one can see in the example considered 
in [17]. They show that under certain hypothesis, if S c B is a rational surface and the 
“general” fiber over a point in S is a cycle of N rational curves with enhanced gauge group 
SU (N), then each of the N irreducible component of SU (N) contribute to the superpo- 
tential. However, only N - 1 of them are “exceptional” divisors. In this case the birational 
morphism is the contraction to the Weierstrass model (Observation 1.3). It should be pointed 
out that there exists a relation among these N divisors (N - 1 are “independent”) [ 171. 

If the normal bundle is negative (Grauert), a contraction is possible, at least in the analytic 
category. We would like this contraction to be projective and to describe the singularities 
which might occur. In the case of F-theory we would also like to preserve the elliptic 
structure. 

Our approach is to consider the pair (X, D), where D is a divisor contributing to the 
superpotential and exploit once more the fact that this divisor cannot be nef (Remark 3.1). 
We will need some more general definition given in Section 2. 

The reader should probably start from the second part of this section (“the general case”) 
and use the first one as a reference. 

6.1. Log-minimal models 

There are several versions of the log-minimal model program; we follow [ 191, as it seems 
at the moment to be the best suited for our applications. 

rc : X -+ B is any proper morphism between varieties; later we will apply the general 
machinery to the case of the elliptic Calabi- Yau. 

Definition 6.1. NE(X/B) c lQm is the closed convex cone generated (over [w,o) by the 
effective cycles of (complex) dimension 1, mod. numerical equivalence. 
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Definition 6.2. D is n-nef if D . r 2 0 for all the curves r E NE!(X/B). 

309 

A relative version of Kleiman’s criterion says that the cone of 7t-nefdivisors (which is 
the closure of the n-ample cone) and NE(X/B) are dual cones. The duality is again given 
by the intersection pairing (cf. Definition 2.1). 

Is what follows we will have to consider singular varieties; a crucial point in the (log)- 
minimal model program is the existence of a “reasonable” intersection pairing between 
complex curves (with values in a$) and complex subvarieties of codimension 1 (Weyl divi- 
sors). This motivates the following: 

Definition 6.3. A variety has Q-factorial singularities if for any D Weil divisor, there exists 
an integer r such that r D is a line bundle (D is also called Q-Cartier divisor). 

Unless noted otherwise all the varieties are assumed to be normal and Q-factorial. We 
will also consider Weyl divisors with rational coefficients. 

Below D is such a divisor: D = CaiLi, with Li distinct complex subvarieties of 
codimension 1 (Weyl divisors) and ai E Q, 0 5 ai < 1. U Li is called support of D. 

We write 23 = ‘D’ if some multiple of D and ZS are equivalent as line bundles. 

Definition 6.4. The pair (X, I?) (as above) has at worse log-terminal (log-canonicuZ) sin- 
gularities if there exists a resolution of the singularities f : Y + X such that the union of 
the exceptional divisor and the inverse image of ULi is a divisor with normal crossings and 

KY = f *(Kx + D) + c bkMk 

such that bk > -1 (resp. L -l), Vk. 

(The definition does not depend on the choice off and Y.) If2) = 0 and bk > O(bk 2 0) 
then the singularities are called terminal and canonical, respectively. 

If dim(X) = 2 and X, the singularities are at worse terminal, then X is smooth, the 
canonical singularities are the rational double points. 

The following is a generalized version of the contraction theorem (Theorem 2.7): 

Theorem 6.5 (Contraction morphism). Let n : X + B be a morphism between varieties. 
If (X, V) has log-terminal singularities and Kx + 2) is not n-nef (i.e. (Kx + V) . R < 0 
for some extremal ray R E NE(X/B)), then there exists u morphism that $R : X + Z, 
contracting all the curves in the numerically equivalence (homology) class of [RR] such that 
the following diagram is commutative: 

Z is a normal variety and dim NE(X/B) > dim NE(Z/B). 
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Proo$ For a proof and various reference, see for example [ 19, Theorems 3.1.1,3.2.1,4.1.1 
and 4.2. I]. 0 

(*) We assume also that some line bundle multiple of Kx +D has a section (i.e., the Kodaira 
dimension of Kx + D is non-negative). This is the case in our applications, where 

Xx - Ox and a multiple of 2, is an effective divisor contributing to the superpotential. 
In this case, the contraction morphism in Theorem 6.5 is birational. 

The log-minimal model conjecture says that there exists a birational map p : X + X 
and a morphism it : Jf -+ B such that Kg + fi is ii-nef and the following diagram is 
commutative: 

Here 2, = ~(27) and (2, Z?) is the log-minimal model. 
The problem is that when the contraction in Theorem 6.5 is not divisorial (i.e. the ex- 

ceptional locus is not a divisor), it is not possible to define an intersection product which is 
compatible with our structure (Definition 6.3). If so, we would in fact have a contradiction: 

In this case we have the following: 

Conjecture 6.6. There is another birational transformation ( “log-jlip”), which is an iso- 
morphism outside a set of codimension greater than 2 (an isomorphism in codimension 1): 

log-flip 

such that XR has log-terminal (CD -factorial) singularities and p(KxR + p(D)) f R+ > 0, 
for all the curves A contracted by @+. 

The number consecutive to such log-jhps is always$nite. 

The log-minimal model conjecture is a theorem if dim(X) 5 3 (see for example [25]) 
and it has been worked out in various special examples, among which the ones considered 



A. Grassi/Joumal of Geometry and Physics 28 (1998) 289-319 311 

in Section 5 (which we review in Example 6.8) and when the techniques of toric geometry 
can be applied [27,38]. 

6.2. Transition II: The general case 

Now let X be a smooth Calabi-Yau 4-fold and D a divisor contributing to the superpo- 
tential; then D is not nef, i.e., there is an effective (complex) curve R such that D . R = 
(Kx + D) . R < 0 (cf. Remark 3.1). The idea is to use the contraction morphism in 
Theorem 6.5. 

We consider the pair (X, D), where ZJ = r D, for some 0 < r < 1, E Q: X is smooth, so 
we can take as f in Definition 6.4 the identity map and verify that the pair has log-terminal 
singularities (this is true also if D has normal crossing singularities). 

If the log-minimal model conjecture holds, then the following conjecture is true: 

Conjecture 6.7. Let X be a Calabi-Yau 4-fold and D a divisor contributing to the super- 
potential. Then there exists a birational transformation p : X + X, with canonical singu- 
larities (the same singularities of the Weierstrass model) and p (0) is a nef effective divisor. 

Proof Start with (X, ‘Do> as above. If the log-minimal model conjecture holds, then p is 
a composition of contraction morphisms (Theorem 6.5) and log-flips (Conjecture 6.6). 
If v : X + X’ is either the contraction morphism in Theorem 6.5, or the “log-flip” in 
Conjecture 6.6 then X’ has canonical singularities [ 18, 1.51; these are the same singularities 
of our Weierstrass models (cf. Lemma 1.2)). Then KL - 0x1 and Kxl + u(D) - v(D). 

Note that v(D) is well-defined and that these log-flips are “flops” (because the canonical 
divisor is trivial). 0 

Propositions 5.1 and 5.2 are particular cases of this general setup. 

Example 6.8. Let rc : X + B an elliptic fibration between smooth varieties. Assume 
that X is equal to the smooth “general” Weierstrass model over B and that D is divisor 
contributing to the superpotential. Then D = JC* (C) for some smooth divisor on B. 

Now let us consider the induced elliptic fibration c : X -+ BR and NE(X/BR). This 
two-dimensional cone is generated by a fiber r of the fibration n and the extremal ray R 
in X (more precisely, the isomorphic image in the section T C X of the extremal ray R in 
B): D . r = 0, while D . r < 0. 

Then there exists a contraction morphism @R : X + 2 (Theorem 6.5) contracting 
the curves in the homology of class [RI; this contraction cannot be divisorial (it comes 
from a contraction from the lower dimensional B). In each of the cases considered the flop 
PR : X + XR exists [27]. Let nR be the induced elliptic fibration. We now concentrate on 
the case (1) of Example/Theorem 2.10; the others are similar. 

After the “flop” the relative cone NE(XR/BR) is still two-dimensional and it is generated 
by the image of the fiber of nR, which we will denote by r+, and R+, a fiber of XR + 
Z. It is easy to verify that p(D) . R+ > 0, while p(D) . r+ < 0. In this case the 
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contraction morphism corresponding to P+ is divisorial and the divisor D is the exceptional 
divisor. 

belore the flop 

Cone NB(X/B) Cone NB (XaI B )a 

If n : X -_, B has more than one section (the rank of the Mordell-Weyl group is positive), 
we first have to perform “flops” along the sections (as in [34, vol. 4761). 

7. Tables for “general” elliptic CY with basis Fano 3-folds 

In the following TC : X + B is an elliptic Calabi-Yau 4-fold and B is a Fano 3-fold. 
In Tables 1-6 we follow the list of Fano 3-folds of Iskovskih-Mori-Mukai: the 3-folds are 
subdivided by their second betti number, 1 5 b2 = h”’ 5 10, which is also the dimension 
of the Mori (and Kahler) cone of B. 

We gather various information about the Fano 3-folds and the “general” elliptic Calabi- 
Yau 4-folds fibred over them. 

We use the criteria developed in Sections 1 and 3 to determine the divisors of the form 
D = n*(C) which contribute to the superpotential on X (cf. Example 4.8). If X = W, the 
smooth Weierstrass model (Definition 1. l), these divisors are all the divisors contributing to 
the superpotential (cf. Observation 1.3). The divisors C determine a birational contraction 
B --+ BR. We identify BR when it is another Fano (cf. Example/Theorem 4.5). If X = W, 
we also compute the topological Euler characteristic of X. In particular: 
- The first number in the table corresponds to the one assigned in [31] to each 3-fold 

with a given b:! = h’*‘. If n : W = X + B is the smooth general Weierstrass model 
(Definition 1.1) (there is only one section of 7t), then h*,‘(X) = hi,‘(B) + 1. 

- The second column says whether B is toric: a list of toric 3-fold and the related superpo- 
tential appears in [21,29], if the 3-fold is toric, 3k is the symbol used in [3,29,38]; many 
examples are also in [28]. 

- The third column is about the divisors contributing to the superpotential as in 
Example/Theorem 4.5. If Dj = n*(C), then (C) is a divisor of the type (j), 1 5 j 5 4, 
if there are two different divisors of the same type (j) of Example/Theorem 2.10 we will 
denotethemas Dj, DT (1 5 j 5 4). 
If the same divisors are exceptional for two different contractions (as in Example/ 
Theorem 4.5) we simply write it twice (this is the case of no. 3, h”’ = 3) 
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If~:B~BRisthecontractionofDjthenh’,’(BR)=h”’(B)-l.IfX=Wthese 
birational transformations are “promoted” to birational transitions of the Calabi-Yau 4- 
fold X (see Sections 5 and 6.2). 
If BR is Fano, Dj (I) means that BR is the Fano 3-fold with number e in the Mori-Mukai 
classification [31] of 3-folds with h”’ = h’>‘(B) - 1. 
The fourth column lists the P’-fibrations (denoted by pi : B + 5’) and the conic bundles 
(denoted by ci : B -+ S): this is relevant from the point of view of heterotic theory. 
The fifth column is 12~1 (B) . c2( B) + 360~: (B), which is the Euler characteristic of the 
smooth Weierstrass model (if any) over B. By the Riemann-Roth theorem for 3-folds 
[13], 12cr(B). Q(B) = 288,(0~) = 288 (B is uniruled). 
We use a rather crude (but readily available [ 14,15,32]) criterion to determine whether 
there exists a smooth Weierstrass Calabi-Yau model over B (cf. Definition 1. l), namely 
we require -Kg to be very ample. On the other hand, most Fano satisfy this criterion: we 
write “no” in the last column if -KB is not very ample. Otherwise X = W, its smooth 
Weierstrass model; in this case, we see from the list that 

x(X) = 144(17 + 5Q, 0 5 fZ 5 25, e = 28,29. 

Table 7 is the flow chart of transition among the Fano 3-folds corresponding to divisors 
contributing to the superpotential (as in Example/Theorem 4.5). These are also “pro- 
moted” to transition among Calabi-Yau 3-folds (as in Sections 5 and 6.2). 
The columns correspond the values of h ‘% ’ (B), starting from 5 on the left and ending 
with 1 on the right. 
The thick lines represent a contraction of a divisor (- P’ x P*) to a point (cf. type (2) 
of Example/Theorem 2.10), while the others represent a contraction of a rational ruled 
surface (cf. type (1) of Example/Theorem 2.10). 
Table 1 represents h’,‘(B) = 1. 
Tables 2 and 3 contain data for h ‘3’ (B) = 2 and 3, respectively. 

Table 1 
h’,lCB1 = I 

Iskovskih [14,15] classified all such varieties: the following occur in the flow chart (Table 7) together with 
I@: 

Q c P4, a smooth quadric surface. 
V3 c P3, a smooth cubic surface. 
V4 c P5, a complete intersection of two quadrics. 
Vs c P9, is a complete intersection of a linear subspace P6 c p9 and the Grassmann variety of Gr 1,4 
embedded in P9 by the Plucker embedding. 
_ The only Fano toric variety with h”‘(B) = 1 is [FD3. 
_ No divisor contribute to the superpotential (cf. Example 4.1) and there is no P’ -fibration. 
- All these 3-folds have -KB very ample with the following exceptions (see [15, vol. 12, Table 6.51 or 
also [36]): 
The double cover of P3 with branch locus a sextic. 
The double cover of a quadric in p4 branched over the intersection of the quadric and a quartic. 
VI (i.e. the double cover of the cone over the Veronese). 
V2 (i.e. the double cover of P3 with quartic ramification). 
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Table 2 
h’s’ (B) = 2 
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No. Toric Contribution to 
the superpotential 

Fibrations x(X) Very 
ample 

1 No None 

2 No None 
3 No None 
4 No None 
5 No None 

6 No None 
7 No None 

8a No 04 

8b No None 

9 No None 
10 No None 

11 No DI (V3) 

12 No None 

13 No None 
14 No None 
15a No 04 

15b No None 

16 No Q (V4) 

17 No None 

18 No None 
19 No D1 (V4) 

20 No Q W5) 

21 No 0; (QL 0; 

22 No Dl’ (P3L 0; (V5) 

23a No D4 

23b No None 

24 No None 
25 No None 

26 No D; (Q,. 0: (Vd 
27 No DI P3) 
28 No 03 

29 No DI (C?) 

30 No DI P3L 02 

31 No Q (Q) 
32 No None 

33 35 DI (P3) 
34 32 None 

35 33 02 P3) 

36 34 None 

None 

c : B + lFo2 
None 
None 
None 

c, : B --f p*,q : B + P2 
None 

c : B + P2 
c : B + p2 
c : B -+ $= 
None 

c : B -+ p2 
None 

c : B + p2 
None 
None 
None 

c : B + P2 
None 
c : B + P2 
None 

c : B + P* 

None 

None 

None 
None 

c:B+P*,~:B+$~ 
None 
None 

p : B --f P* 
None 
None 
None 

p:B-tp2 
p1 : B + [FD2, p2 : B -+ P* 
None 
p:B+p* 
p:B-tP2 
p:B+p2 

No 

No 
No 

3888 
4608 
4608 
5328 

5328 

5328 

6048 
6048 

6768 
7488 

7488 
7488 
8208 
8208 

8208 
8928 

8928 
9648 
9648 

10368 

11088 

11088 
11088 

11088 
11808 
12528 

13968 
14 688 
14 688 

16 848 
16 848 

17 568 

19728 
19 728 
20448 
22 608 

Sk denotes P* blown up at 9 - k points; for example 313 = P’ x ST. Tables 4 and 5 
contain data for h ‘,l (B) = 4 and 5, respectiely. 
B = P' x Sk, with 1 5 k 5 5; h','(B) = 11 - k. None of these 3-folds is toric; the 

extremal contractions are induced by the blow ups: Sk + &+I. Table 6 shows data when 
h','(B) > 6. 
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h’,‘(B) = 3 
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No. Toric Contribution to 
the superpotential 

Fibrations x(X) 

1 No 

2 No 

3 No 

4 No 

5 No 

6 No 

7 No 

8 No 

9 No 

10 No 

11 No 

12 No 

13 No 

14 No 

15 No 

16 No 

17 No 

18 No 

19 No 

20 No 

21 No 

22 No 

23 No 

24 No 

25 6 
26 F’2 

21 F6 

28 F9 

29 ;F11 

30 FIO 

31 Fl 

None 

DI, DI 

None 

Q (18) 

0; (34), D;> 0; 

Q (33) 

None 

0; (241, 0; (34) 

D;, 0-z 

D; W, 0: 

0; (23, 0; (34) 

0; (27), 0; (331, D;(34) 

D; (321, D:, 0; 

M28). 03 

Df (291, 0; (311, @34) 

D; (2% 0; (321, D;(35) 

0; (34),$ 

Df (291, 0; (30), Df(33) 

D; (35), D;> D;> 0;’ 

0; (31). 0; (321, 0; 

D; (34). Of. 0: 

D; (341, D;(36), 03 

D; (301, 0; (311, @35) 

D; (321, 0; (34) 

0; (33), 0; 

0; (33#(34), &(35) 

None 

D’ (34) 

0; (351, 0: (361, D3 

Df (331, D;(35) 

D’, DI 

C’ : P’ x P’, c2 : P’ x P’, c3 : P’ x P’ 

c : B + P’ x P’ 

c : B -+ P’ x $1 

C’ : B + P2.c2 : B + P’ x $1 

None 

c : B -+ P’ x P’ 

None 

c : B + $1 x P’ 

None 

None 

None 

None 

None 

None 

None 

None 

p:B+$‘x$’ 

None 

None 

None 

None 

None 

None 

p:B-+IF* 

p:B+P’x$’ 

None 

p, : $1 x P’, p2 : P’ x P’, p3 : P’ x P’ 

pl:B+P’xP’,p2:B-t~‘xP” 

None 

p:B+F, 

p:B+IFP’xP’ 

4608 

5328 

6768 

6768 

7488 

8202 

8928 

8928 

9648 

9648 

10368 

10 368 

11088 

11808 

11808 

12528 

13 248 

13 248 

13 968 

13968 

13968 

14688 

15408 

15408 

16 128 

16848 

17 568 

17 568 

18288 

18288 

19008 
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Table 4 
h’,‘(B) = 4 
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No. Toric Contribution to the superpotential Fibrations x(X) 

1 No 

2 No 

3 No 

4 No 

5 No 

6 No 

7 No 

8 No 

9 -T1s 

10 Fl3 

11 Fl4 

12 Fl6 

None 

D;> Df > D;, Df 

D;(l7), D; (27), D;(28), D;1(28) 

D; (18), D; (18), D;(l9), D;(30), D;(30) 

Df (21), D; (28), D;(31), D;‘, 0: 

Df (25), Df (25), D;(25), D;(27) 

D; (24), D; (24), Df(28), Df(28) 

D; (27). Df (31). D;(31), Dy(31) 

D; (25), Df (26), D;(28), D;(30) 

0; WI, D;(28), Df(28) 

Df (28). Df (31). 0;. D; 

0; (30), D; (30), D;, 0;’ 

None 8928 

None 10368 

None 11088 

None 11808 

None 11808 

None 12528 

None 13 248 

None 13968 

None 14688 

p:B+S7 15 408 

None 16 128 

None 16 848 

Table 5 
h’.‘(B) = 5 

No. Toric Contribution to the superpotential Fibrations x (W 

1 No 0’; (4), i = 1,2, 3, 0; (12), i = 4,5,6, 07 None 10368 

2 FIS D;(9), i = 1,2, D;(ll), i = 3,4, D;(12), D;, i = 6.7 None 13 248 

3 597 Df(lO),i = 1....,6 p:B-+Sg 13 248 

Table 6 
h’,‘(B) 2 6 

h’,‘(B) Contribution to the superpotential Fibrations x(X) Very ample 

6 D;,i=l,...,lO 

7 Di,i=l,...,16 

8 Di,i = 1,...,27 

9 D;,i = 1,...,56 

10 Di,i = 1,...,240 

p:B-+$ 

p:B+S4 

p : B + S3 

p : B + S2 

p : B + Sl 

13 248 

15 408 

17 568 

No 

No 

Table 7 is the flow chart of transition among the Fano 3-folds corresponding to divisors 
contributing to the superpotential. 
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Table 7 
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